Mechanics
Physics 151

Lecture 18
Hamiltonian Equations of Motion
(Chapter 8)



What's Ahead

= We are starting Hamiltonian formalism
m Hamiltonian equation — Today and 11/26
m Canonical transformation — 12/3, 12/5, 12/10
m Close link to non-relativistic QM

= May not cover Hamilton-Jacobi theory
m Cute but not very relevant

= What shall we do in the last 2 lectures?
m Classical chaos?
m Perturbation theory?
m Classical field theory?
m Send me e-mail if you have preference!



Hamiltonian Formalism
B

= Newtonian - Lagrangian - Hamiltonian
m Describe same physics and produce same results
m Difference is In the viewpoints
= Symmetries and invariance more apparent
= Flexibility of coordinate transformation

= Hamiltonian formalism linked to the development of
m Hamilton-Jacobi theory
m Classical perturbation theory
= Quantum mechanics
m Statistical mechanics



Lagrange -> Hamilton
L

m Lagrange’s equations for n coordinates

e i _izo i=1...n ¢ 2”d-o_rder differential
dt\ oq ) oq. equation of n variables

m N equations = 2n initial conditions ¢.(t=0) q.(t=0)
= Can we do with 15t-order differential equations?

m Yes, but you’ll need 2n equations
m We keep g and replace g. with something similar

o

= \We take the conjugate momenta p, =



Configuration Space
B

= We considered (q,....,0,) as a point in an n-dim. space

m Called configuration space
m Motion of the system -
A curve in the config space
= \When we take variations,
we consider g, and ¢; as

Independent variables
m |.e., we have 2n independent variables in n-dim. space
m Isn’t it more natural to consider the motion in 2n-dim space?



Phase Space
B

m Consider coordinates and momenta as independent
m State of the system is given by (q,,...,d,, P;,---: P,)
m Consider it a point in the 2n-dimensional phase space

= We are switching the
Independent variables
(9, G, t) = (a0, p;» 1)

m A bit of mathematical trick
IS needed to do this

J =0 (t)
B =P (t)




Legendre Transformation
B

m Start from a function of two variables f (x,y)

m Total derivative iIs

df :ﬂdx+@dyzudx+vdy
OX oy

m Define g = f —ux and consider its total derivative
dg = df —d(ux) = udx +vdy —udx — xdu = vdy — xdu
= l.e. g Isafunctionofuandy

a_gzv 5_g=_x If f=Land (X,¥)=(q,0)
oy ou L(d,9) —> g(p,q) =L - pqg
This i
IS IS what

we need




Hamiltonian

Opposite sign from
Legendre transf.

m Define Hamiltonian: H(q, p,t) =g, p. — L(q,q,t)
m Total derivative Is

dH = pdq, + ¢.dp. —iolqi %d/q—%dt
0q, o ot

b : aL o
m Lagrange’s equations say — = P,

oq;
‘ dH = q;dp, — p,dg, _%dt
= This must be equivalent to Putting them

together gives...

dH = M ap + P ag + Mgt
op, 0q, ot



Hamilton’s Equations
B

. oH . oH : oH oL
m We find ?—qi a0 =—p. and PR

m 2n equations replacing the n Lagrange’s equations

m 1st-order differential instead of 2"d-order
m “Symmetry” between g and p Is apparent

= There iIs nothing new — We just rearranged equations
m First equation links momentum to velocity
= This relation is “given” in Newtonian formalism

m Second equation iIs equivalent to Newton’s/Lagrange’s
equations of motion



Quick Example
B

m Particle under Hooke’s law force F = —kx

L=—x>——

2

2~p__

B H=xp- L——x WX x

X =

:ﬂ+ 2 S
m Hamilton’s equations
oH p _ oH
o/p m = x

DI Replace X with — l

Usual harmonic
oscillator




Energy Function
B

= Definition of Hamiltonian is identical to the energy

function h(g,q,t) =g, g—lf— L(q,q,t)

m Difference is subtle: H is a function of (g, p, t)

m This equals to the total energy if
= Lagrangian is L = Ly(q,t)+ L, (q,t)d; + L, (a,1)d;,
m Constraints are time-independent
= This makes T =L,(q,t)q;q,
m Forces are conservative
= This makes V =-L,(q)

See Lecture 4, or
Goldstein Section 2.7



Hamiltonian and Total Energy
L

= |f the conditions make h to be total energy, we can
skip calculating L and go directly to H
m For the particle under Hooke’s law force
2
I VN L3
2m 2

= This works often, but not always
= When the coordinate system is time-dependent
= e.g., rotating (non-inertial) coordinate system
m When the potential is velocity-dependent
= e.g., particle in an EM field

mook at this ]




Particle in EM Field

B
m For aparticle in an EM field

_E-Z_ : We can’tjumpon H=E
L= 2 % Qg+ qA X <:: because of the last term, but
MX

‘ pi:mxi_l_in
)
m) H=(mx +gA)% —L= 2i +0¢ <= This s in fact E

m We’d be done if we were calculating h

m For H, we must rewrite it using p; = mX. +gA

H(x, p) = (P ;'?]A) + Q¢




Particle in EM Field

BN —0A)°
_ _ H(Xi'pi):(pl ZF(:A) +q¢
= Hamilton’s equations are
- . —QA, OA
Xi:ZH:p. 9% | o ORI PiTO4, _q%
o m ax m  oX

m Are they equivalent to the usual Lorentz force?
m Check this by eliminating p;

oA,
—(mX +0A) =X, T—Q o7

A bit of work
%(mvi) =0k + (v x B)i



Conservation of Hamiltonian
B

m Consider time-derivative of Hamiltonian
dH (q, p,t) _ oH C'Hﬁ . +8H

dt app ot

",
: H Hamiltonian is
—_ y{ T i <: conserved if it does not
at depend explicitly on t

= H may or may not be total energy
m If it is, this means energy conservation
m Evenifitisn’t, H is still a constant of motion



Cyclic Coordinates
B

m A cyclic coordinate does not appear in L
m By construction, it does not appear in H either

H()Z{’ p.t)=0;p; - L(ﬂﬂ’t)

m Hamilton’s equation says

oH 0 <|I: Conjugate momentum of a
cyclic coordinate is conserved

m EXxactly the same as in the Lagrangian formalism



Cyclic Example

B
m Central force problem in 2 dimensions
L :%(r‘2 £ r26%) -V (r) —
mm) D =M p,=mr’d
1 ( o
H :% pr2+—§ +V (r) <,I:<6?is cyclic| p, =const =1
r
> : Hamilton’s equations
:i pr2_|_l_2j_|_V(r) r:& _ |2 _8V(r)
2 ' m " mr’ or

m Cyclic variable drops off by itself



Going Relativistic
B

m Practical approach
= Find a Hamiltonian that “works”
m Does it represent the total energy?

= Purist approach
m Construct covariant Hamiltonian formalism
= For one particle in an EM field

m Don’t expect miracles
m Fundamental difficulties remain the same



Practical Approach
EE—

m Start from the relativistic Lagrangian that “works”

L =-mc®y1- B -V (X)
oL mv.

) p=-— = ' Did this last time
8V /1_182 <::: .

L 2.2 2 4
H_h_\/pg+\mc +V (X) )

m It does equal to the total energy
m Hamilton’s equations
oH pc’ P,

~oH oV _

F

X = — =k
OX.

on Jpic? +mict  my " o




Practical Approach w/ EM Field

B
m Consider a particle in an EM field

L =-mc®y1-B* —qd(x)+a(v-A)

m Hamiltonian is still total energy
H =myc® +q¢ <:Z: Can be easily checked

— Jm%Av%c? £ m2ct +qg

= Difference is in the momentum p, = myv. + gA

m) H=./(p—gA)c? +mZc* +q¢
\_

Not the usual linear momentum!




Practical Approach w/ EM Field
B
H= \/(p—qA)Zcz +m°c’ +q¢
m Consider H-q¢
=) (H —g¢)* —(p—gA)°c? =m*c’ <Hconstant
m It means that (H —qg¢, pc—gAc) is a 4-vector,

and so is (H,pc) Similar to 4-momentum (E/c, p) of
( a relativistic particle

Remember p here is not the linear momentum!

= This particular Hamiltonian + canonical momentum
transforms as a 4-vector

m True only for well-defined 4-potential such as EM field




Purist Approach

B
m Covariant Lagrangian for a free particle A=<mu u”

Y7,
‘ p,U :a_A:mu:u ‘ H — p,up
ou, 2m

s We know that p°is E/c
m We also know that x° is ct...

‘ Energy is the conjugate “momentum” of time

m Generally true for any covariant Lagrangian
= You know the corresponding relationship in QM



Purist Approach

.
m Value of Hamiltonian is

7 2
MmcC
H= pgp — ; <:::This is constant!
m

m What is important is H’s dependence on p#

= Hamilton’s equations
/ 4-momentum
dx oH p* dp* OH

conservation

dr_apﬂ m dr  ox

m Time components are

d(ct) E d(E/c) < Energy definition
= =0

dr mc =¥C dr and conservation




Purist Approach w/ EM Field

= With EM field, Lagrangian becomes
A(X“,u¥)=5mu u” +qu A, = p“=mu” +gA*
- H - mu,u® (P, —9A,)(p" —gA")
2 2m

m Hamilton’s equations are
dx oH p“-gA" dp* oH  (p,—0A) oA

dr op m dr @ m X,

y7i
m A bit of work can turn them into

mdu” _q OA"  OA" U o KA
dr @Xﬂ ox v 4-force




EM Field and Hamiltonian
.

= |n Hamiltonian formalism, EM field always modify

the canonical momentum as pi = p; +gA”

With EM field ~ \- Without EM field

= A handy rule:

Hamiltonian with EM field is given by replacing p#
In the field-free Hamiltonian with p# — gA#

m Often used in relativistic QM to introduce EM interaction



Summary
B

m Constructed Hamiltonian formalism
m Equivalent to Lagrangian formalism
= Simpler, but twice as many, equations
m Hamiltonian is conserved (unless explicitly t-dependent)
= Equals to total energy (unless it isn’t) (duh)
m Cyclic coordinates drops out quite easily

= A few new Insights from relativistic Hamiltonians
m Conjugate of time = energy
m p“ — gA#rule for introducing EM Interaction



