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Lecture 18
Hamiltonian Equations of Motion

(Chapter 8)



What’s Ahead

We are starting Hamiltonian formalism
Hamiltonian equation – Today and 11/26
Canonical transformation – 12/3, 12/5, 12/10
Close link to non-relativistic QM

May not cover Hamilton-Jacobi theory
Cute but not very relevant

What shall we do in the last 2 lectures?
Classical chaos?
Perturbation theory?
Classical field theory?
Send me e-mail if you have preference!



Hamiltonian Formalism

Newtonian Lagrangian Hamiltonian
Describe same physics and produce same results
Difference is in the viewpoints

Symmetries and invariance more apparent
Flexibility of coordinate transformation

Hamiltonian formalism linked to the development of
Hamilton-Jacobi theory
Classical perturbation theory
Quantum mechanics
Statistical mechanics



Lagrange Hamilton

Lagrange’s equations for n coordinates

n equations 2n initial conditions

Can we do with 1st-order differential equations?
Yes, but you’ll need 2n equations
We keep      and replace      with something similar

We take the conjugate momenta
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Configuration Space

We considered                 as a point in an n-dim. space
Called configuration space
Motion of the system 
A curve in the config space

When we take variations,
we consider     and      as
independent variables

i.e., we have 2n independent variables in n-dim. space
Isn’t it more natural to consider the motion in 2n-dim space?
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Phase Space

Consider coordinates and momenta as independent
State of the system is given by
Consider it a point in the 2n-dimensional phase space

We are switching the
independent variables

A bit of mathematical trick
is needed to do this
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If               and

Legendre Transformation

Start from a function of two variables
Total derivative is

Define                   and consider its total derivative

i.e. g is a function of u and y
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Hamiltonian

Define Hamiltonian:
Total derivative is

Lagrange’s equations say

This must be equivalent to
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Hamilton’s Equations

We find                              and

2n equations replacing the n Lagrange’s equations
1st-order differential instead of 2nd-order
“Symmetry” between q and p is apparent

There is nothing new – We just rearranged equations
First equation links momentum to velocity

This relation is “given” in Newtonian formalism
Second equation is equivalent to Newton’s/Lagrange’s 
equations of motion
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Particle under Hooke’s law force F = –kx

Hamilton’s equations

Quick Example
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Energy Function

Definition of Hamiltonian is identical to the energy 

function

Difference is subtle: H is a function of (q, p, t)

This equals to the total energy if
Lagrangian is
Constraints are time-independent

This makes
Forces are conservative

This makes
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Hamiltonian and Total Energy

If the conditions make h to be total energy, we can 
skip calculating L and go directly to H

For the particle under Hooke’s law force

This works often, but not always
when the coordinate system is time-dependent

e.g., rotating (non-inertial) coordinate system
when the potential is velocity-dependent

e.g., particle in an EM field
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Particle in EM Field

For a particle in an EM field

We’d be done if we were calculating h

For H, we must rewrite it using
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Particle in EM Field

Hamilton’s equations are

Are they equivalent to the usual Lorentz force?
Check this by eliminating pi
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Conservation of Hamiltonian

Consider time-derivative of Hamiltonian

H may or may not be total energy
If it is, this means energy conservation
Even if it isn’t, H is still a constant of motion
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Cyclic Coordinates

A cyclic coordinate does not appear in L
By construction, it does not appear in H either

Hamilton’s equation says

Exactly the same as in the Lagrangian formalism
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Cyclic Example

Central force problem in 2 dimensions

Cyclic variable drops off by itself
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Going Relativistic

Practical approach
Find a Hamiltonian that “works”

Does it represent the total energy?

Purist approach
Construct covariant Hamiltonian formalism

For one particle in an EM field

Don’t expect miracles
Fundamental difficulties remain the same



Practical Approach

Start from the relativistic Lagrangian that “works”

It does equal to the total energy
Hamilton’s equations
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Practical Approach w/ EM Field

Consider a particle in an EM field

Hamiltonian is still total energy

Difference is in the momentum
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Practical Approach w/ EM Field

Consider H – qφ

It means that                                 is a 4-vector,
and so is

This particular Hamiltonian + canonical momentum 
transforms as a 4-vector

True only for well-defined 4-potential such as EM field
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Purist Approach

Covariant Lagrangian for a free particle

We know that p0 is E/c
We also know that x0 is ct…

Generally true for any covariant Lagrangian
You know the corresponding relationship in QM
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Purist Approach

Value of Hamiltonian is

What is important is H’s dependence on pµ

Hamilton’s equations

Time components are
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Purist Approach w/ EM Field

With EM field, Lagrangian becomes

Hamilton’s equations are

A bit of work can turn them into
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EM Field and Hamiltonian

In Hamiltonian formalism, EM field always modify 
the canonical momentum as

A handy rule:

Often used in relativistic QM to introduce EM interaction

0Ap p qAµ µ µ= +
With EM field Without EM field

Hamiltonian with EM field is given by replacing pµ

in the field-free Hamiltonian with pµ – qAµ



Summary

Constructed Hamiltonian formalism
Equivalent to Lagrangian formalism

Simpler, but twice as many, equations
Hamiltonian is conserved (unless explicitly t-dependent)

Equals to total energy (unless it isn’t) (duh)
Cyclic coordinates drops out quite easily

A few new insights from relativistic Hamiltonians
Conjugate of time = energy
pµ – qAµ rule for introducing EM interaction


